

Frequently Asked Questions

For the
Cryptographic Algorithm Validation Program
Concerning the Validation of Cryptographic

Algorithm Implementations

National Institute of Standards and Technology
Communications Security Establishment

TY

R
N

E C
P

OI
N

EN
I

H
A H

SG
N

H
AA I

T
O

T
N UT

C
IA

N
U S

GT E
I R G

M
KY

E
T.

AUTHENTICATION

CAVP

KEY MGT.

SIGNATURE

HASHING

ENCRYPTION

Initial Release: May 16, 2005

Previous Update: June 13, 2005

Previous Update: September 15, 2005

Last Update: March 30, 2006

 1

New FAQ’s and Modified FAQ’s (Issued within the last 45 days)
New FAQ’s

• 11-10-05 GEN.8 Guidance on what to do when the zip file being sent to NIST
containing the CAVS results is too large to send via email.

• 03-25-06 GEN.9 What should be done if an algorithm implementation is
housed on two different version numbers of a chip?

• 03-25-06 GEN.10 Suppose an algorithm implementation has been validated
on a chip. What happens when a change is made to this chip? . It is
claimed that the change is not directly related to the algorithm
implementation. Is the algorithm validation still valid?

• 03-25-06 GEN.11 If a vendor claims that their implementation runs on
multiple operating systems, how should this be thoroughly validated?

• 03-25-06 CMAC FAQ added
• 03-25-06 CMAC.1 What should be done in the situation where an

implementation only supports one message length for either case where
the message length is divisible by the Blocksize or the message length is
not divisible by the Blocksize?

Modified FAQ’s

• 06-13-05 GEN.5 186 RNG and ECDSA RNG do not require prerequisite

validation testing for the embedded core functions.
• 06-13-05 GEN.5 ANSI X9.31 RNG does not require prerequisite validation

testing for the embedded core functions.
• 09-15-05 AES.1 Guidance on evaluating the Counter Mode (for either the

AES or TDES algorithm) if it is implemented in hardware.
• 09-15-05 TDES.1 Guidance on evaluating the Counter Mode (for either the

AES or TDES algorithm) if it is implemented in hardware.
• 03-25-06 GEN.5 Added CMAC information
• 03-25-06 GEN.1 Added CMAC information
• 03-25-06 13 CMAC Added CMAC information

 2

1 Introduction...4

2 General Algorithm FAQs (Can be applied to all algorithms)5

3 AES FAQ..11

4 DES FAQ..12

5 Triple-DES FAQ..13

6 DSA FAQ..14

7 SHA FAQ..17

8 RNG FAQ ...18

9 RSA FAQ..19

10 HMAC FAQ...22

11 CCM FAQ...24

12 ECDSA FAQ...25

13 CMAC FAQ...27

 3

1 Introduction

Below is a compilation of questions received from the Cryptographic Module Testing
(CMT) laboratories relating to the validation of cryptographic algorithm
implementations. Some of the questions are related to the Cryptographic Algorithm
Validation Program (CAVP) while others are related to the Cryptographic Algorithm
Validation System (CAVS) tool and how it is used to validate these implementations.

This is intended for use by the CMT laboratories when validating cryptographic
algorithms submitted by vendors. Vendors may find the information useful when
submitting their information to the CMT laboratories for cryptographic algorithm
implementation validation. This compilation of topics covers issues such as what
information is required when validating an implementation, individual cryptographic
algorithm guidance, how to use the CAVS tool, etc.

Currently the CAVP provides validation testing for the following algorithms:

1. Advanced Encryption Algorithm (AES),
2. Triple Data Encryption Algorithm (Triple-DES),
3. Data Encryption Algorithm (DES),
4. Digital Signature Algorithm (DSA),
5. Secure Hash Algorithm (SHA),
6. Random Number Generator (RNG),
7. Reversible Digital Signature Algorithm (RSA),
8. Elliptic Curve Digital Signature Algorithm (ECDSA),
9. Keyed-Hash Message Authentication Code (HMAC),
10. Counter with Cipher-Block Chaining-Message Authentication (CCM)
11. CMAC Algorithm (CMAC)

 4

2 General Algorithm FAQs (Can be applied to all
algorithms)

GEN.1 Where is the documentation for each algorithm
validation system found?

Refer to the individual validation system guides for each supported algorithm for an
explanation of the validation tests required for that specific algorithm. These validation
guidelines are located in the specific algorithm section found on the csrc.nist.gov/cryptval
website. For example, to find the Advanced Encryption Standard Algorithm Validation
Suite (AESAVS), go to the csrc.nist.gov/cryptval website. Select Symmetric Keys in the
blue column on the left. This page gives information for AES, TDES, DES, and
Skipjack. A link to the AESAVS is in the Testing Requirements section. The individual
validation guidelines for the currently supported algorithms are:

1. The Advanced Encryption Standard Algorithm Validation Suite (AESAVS),
2. NIST Special Publication 800-20, Modes of Operation Validation System for the

Triple Data Encryption Algorithm (TMOVS): Requirements and Procedures. (An
additional test, the Multi-block Message Text (MMT), is also required.),

3. NIST Special Publication 800-17, Modes of Operation Validation System
(MOVS): Requirements and Procedures (The DES algorithm also requires the
completion of the MMT tests.),

4. The Digital Signature Algorithm Validation System (DSAVS),
5. The Secure Hash Algorithm Validation System (SHAVS),
6. The Random Number Generator Validation System (RNGVS),
7. The Reversible Digital Signature Algorithm Validation System (RSAVS),
8. The Elliptic Curve Digital Signature Algorithm Validation System (ECDSAVS),
9. The Keyed-Hash Message Authentication Code Validation System (HMACVS),
10. The Counter with Cipher-Block Chaining-Message Authentication Validation

System (CCMVS)
11. The CMAC Validation System (CMACVS)

GEN.2 Is it acceptable if an implementation of an algorithm
is presented in such a manner that the end user using the
implementation must make calls to several functions in order to
perform a major function of the algorithm (for example,
Signature Generation)?

No. NIST expects that all the parts of an implementation of an algorithm will be
contained within one executable (or its equivalent in firmware or hardware) and that one
call to the algorithm implementation will determine which of the underlying functions are

 5

executed, how these underlying functions are executed, and in what order these functions
are executed. For example, in a PKCS1.5 implementation, as the PKCS#1 v2.1
document states, we would expect that a call to RSASSA-PKCS1-V1_5_SIGN would
call EMSA_PKCS1_V1_5_ENCODE and RSASP1. The CAVS testing has been
designed to assure that the functionality of the underlying functions within an algorithm
implementation is operating correctly. If all the "parts" are supplied to an end user with
the ability to put them together any way possible, there is no guarantee that they will be
called in the order specified by the standard for that algorithm. Therefore, we cannot
validate this implementation as a completed implementation.

GEN.3 Should the algorithm implementation name be
independent of the cryptographic module name with which it is
associated?

Yes, the implementation name should reflect the name of the algorithm
implementation itself. It should not reflect the name of the cryptographic module that
contains this implementation. If both the algorithm implementation and the
cryptographic module have the same names, this causes major problems later on when
the algorithm implementation is ported to another module. It would appear that one
module is being used in another module. This also causes confusion when a module
version number changes but the algorithm implementation version number does not, or
visa versa. Vendors should assure that the name supplied reflects the name of the
implementation and not that of the cryptographic module.

GEN.4 If an algorithm implementation performs more than
one algorithm (for example, if an algorithm implementation
named XYZ CryptoLib2000 performs both AES and SHA), can a
different description be given for each algorithm?

No, the implementation description for an implementation applies to all algorithms
implemented by this implementation. The same description will be displayed on all
algorithm validation lists for this implementation. (In the example above, the same
description will be displayed on the AES and SHA validation lists for this algorithm
implementation.)

GEN.5 Are there prerequisites to having some algorithms
validated?

Yes. The following list specifies a list of algorithm components that, if tested, need
additional testing to be performed in other algorithm sections. For example, in DSA Key
Generation testing, the underlying RNG engine is not stressed in a complete fashion;

 6

therefore, the RNGVS suite must be performed on the underlying RNG engine in order to
receive validation of the DSA implementation. .

Algorithm Tested Additional Required Test(s)

AES
 Counter mode AES – ECB mode

TDES
 Counter mode TDES – ECB mode

DSAVS
 Domain Param Gen SHA-11

 Domain Param Ver SHA-12

 Key Gen RNG
Sig Gen SHA-1, RNG (because of per

message secret #)
 Sig Ver SHA-1

RNG

186 RNG DOES NOT REQUIRE
PREREQUISITE TESTING
(Notes: Uses a SHA-like function.
Therefore ECDSA RNG SHA does
not need to be validated. The DES
algorithm is tested sufficiently by the
RNG for use by the RNG function.)

ANSI X9.31 DOES NOT REQUIRE

PREREQUISITE TESTING
(Notes: The underlying algorithms
are tested sufficiently by the RNG
for use by the RNG function.)

RSA
 KeyGen9.31 For only KeyGen9.31: RNG

SigGen9.31 For all functions: The supported
SigGenPKCS1.5 SHA algorithm: SHA-1, SHA-256,

 SigGenPSS SHA-384, or SHA-512 (SHA-224
SigVer9.31 for PKCS versions)
SigVerPKCS1.5

 SigGenPSS

1 Uses SHA-1, but this is not a “hidden” value as when generating the private key, x, or the per message
secret value, k. If this process is done incorrectly, the correct value of Q cannot be determined.
2 same as above.

 7

 HMAC The supported SHA algorithm(s)

CCM Some mode of AES used by the
CCM

ECDSA
 Key Pair RNG
 PKV Nothing
 Sig Gen SHA, RNG (because of per message

secret #)
 Sig Ver SHA

CMAC The underlying encryption

algorithm(s) and mode(s) of
operation and states (encryption and
decryption) implemented in the
CMAC implementation; i.e., the
AES algorithm and/or the TDES
algorithm

GEN.6 An algorithm implementation has restrictions on it
because of the application that contains it. Can I validate the
algorithm implementation?

In order for a cryptographic algorithm to be validated, the algorithm must be designed in
such a way as to allow for testing by the validation tests. It must also be designed as
specified in the corresponding official algorithm document. If these two conditions are
not met, the cryptographic algorithm implementation cannot be validated. If the
restrictions of the application interfere in testing the algorithm or designing the algorithm
according to the specifications in the standard, this algorithm cannot be validated.

 GEN.7 Guidance on the relationship between the operating
environment for cryptographic algorithm implementation
validations and the operating environment for cryptographic
modules.

The operating environment listed for a cryptographic algorithm implementation tested
under the CAVP pertains to the operating environment on which the implementation was
actually tested.

Implementation Guidance (IG) 1.4, Binding of Cryptographic Algorithm Validation
Certificates, identifies the configuration control and operational environment

 8

requirements for the cryptographic algorithm implementation(s) embedded within a
cryptographic module when the latter is undergoing testing for compliance to FIPS
140-2. This IG states:

For a validated cryptographic algorithm implementation to be embedded within a software, firmware
or hardware cryptographic module that undergoes testing for compliance to FIPS 140-2, the following
requirements must be met:

1. the implementation of the validated cryptographic algorithm has not been modified upon
integration into the cryptographic module undergoing testing; and

2. the operational environment under which the validated cryptographic algorithm implementation
was tested by CAVS must be identical to the operational environment that the cryptographic
module is being tested under by the CMT laboratory.

GEN.8 Guidance on what to do when the zip file being sent
to NIST containing the CAVS results is too large to send via
email.

Winzip has an option under the Action screen called Split. It will automatically make
multiple files each a manageable size. Send each of the files indicating this is 1 out of X,
this is 2 out of X, etc.

GEN.9 What should be done if an algorithm implementation
is housed on two different version numbers of a chip?

The algorithm implementation must be validated on each version – two sets of files must
be generated by the CAVS tool to test both operating environments. The reason behind
having to validate the algorithm implementation on the two versions of the same chip is
because these different versions may indicate different run speeds, or temperature speeds.
The vendor would indicate if they want one or two algorithm implementation validation
certificates.

GEN.10 Suppose an algorithm implementation has been
validated on a chip. What happens when a change is made to
this chip? . It is claimed that the change is not directly related
to the algorithm implementation. Is the algorithm validation still
valid?

The laboratory would need to determine whether or not this change modified the
environment. If the environment was changed, the algorithm implementation needs to be
revalidated.

 9

GEN.11 If a vendor claims that their implementation runs on
multiple operating systems, how should this be thoroughly
validated?

A separate set of test vectors will be generated by the CAVS tool. The vendor will use a
different set of test vectors to test each different supported operating environment. Each
of these operating environments will be listed on the algorithm validation certificate and
the website.

 10

3 AES FAQ

AES.1 Guidance on evaluating the Counter Mode (for either
the AES or TDES algorithm) if it is implemented in hardware.
When a CMT Laboratory contracts with a vendor for testing regarding the documentation
and specification of the cryptographic module, the documentation requirements in
Section 4.1 and Section 4.10.3 are applicable. The vendor must supply sufficient
documentation for either cryptographic module testing to FIPS 140-2 or for algorithm
testing (e.g. CCM mode) to the CMT Lab. Module or algorithm validation cannot occur
if a CMT Laboratory cannot demonstrate access to such documentation.

As applied to this specific question, to evaluate an AES counter mode implemented in
hardware, the documentation, the HDL (which is equivalent to the source code for
software), and the hardware schematics of this hardware implementation would be
needed. Documentation alone is not enough because there is no way to prove it is an
accurate account of how the hardware actually works. The HDL and the schematics are
also needed to provide the necessary information to thoroughly evaluate the counter
mode and to prove the documentation is correct.

 11

4 DES FAQ

NOTE: The CAVP has discontinued the issuance of new DES algorithm validation
certificates as of February 9, 2005. DES implementations under contract with a CMT
laboratory prior to February 9, 2005, will be completed. See the DES Transition Plan for
more details.

 12

5 Triple-DES FAQ

TDES.1 Guidance on evaluating the Counter Mode (for either
the AES or TDES algorithm) if it is implemented in hardware.
When a CMT Laboratory contracts with a vendor for testing regarding the documentation
and specification of the cryptographic module, the documentation requirements in
Section 4.1 and Section 4.10.3 are applicable. The vendor must supply sufficient
documentation for either cryptographic module testing to FIPS 140-2 or for algorithm
testing (e.g. CCM mode) to the CMT Lab. Module or algorithm validation cannot occur
if a CMT Laboratory cannot demonstrate access to such documentation.

As applied to this specific question, to evaluate a TDES counter mode implemented in
hardware, the documentation, the HDL (which is equivalent to the source code for
software), and the hardware schematics of this hardware implementation would be
needed. Documentation alone is not enough because there is no way to prove it is an
accurate account of how the hardware actually works. The HDL and the schematics are
also needed to provide the necessary information to thoroughly evaluate the counter
mode and to prove the documentation is correct.

 13

6 DSA FAQ

DSA.1 If vendors are having problems getting their PQGGen
or SigGen to work properly, where can a known set of values be
obtained to help in their testing?
Vendors having problems with a PQGGen or SigGen should generate a sample of values
by running the PQGVer or SigVer test and extracting one of the groups of data that pass
(P). If the implementation being tested does not come up with the correct signature, then
the vendor may assume that there is something wrong with the implementation.

DSA.2 In the X186 RNG, does an implementation have to
support the optional seed XSEED?
An implementation does not have to support the optional seed.
In the DSA algorithm, the XSEED value is added to the XKEY value. This value is then
moded 2^b to compute the XVAL. In the CAVS tool, the SEED value is set to 0 because
it is only used in an addition function and the purpose of the test is not to check if the
implementation can add two numbers together. Instead the purpose of this validation test
is to assure that the implementation performs the G function correctly.

DSA.3 When implementing the RSA key generation
algorithm according to ANSI X9.31, Digital Signatures Using
Reversible Public Key Cryptography, is it acceptable to generate
primes using the procedure detailed in Appendix E.4 of the ANSI
X9.31 standard instead of the procedure described in section
4.1.2.1 of the same standard. Moreover, if this is acceptable,
what sort of primality testing needs to be done? Appendix E.4 is
not very clear in this respect.

Appendix E.4 can be used in addition to, but not in place of Section 4.1.2.1.
Appendix E.4 contains the same calculations for generating the private prime factors that
are found in Section 4.1.2.1. The only difference is that Appendix E.4 explains how to
find the first prime after the first random X is selected by using sieving; it informs the
implementer how to do this. Section 4.1.2.1 does not specify how to select this value.
Therefore, one could add this processing to an implementation.

Appendix E.4 does not specify how to do the primality testing of Y. But since this is a
very important step, it is specified in Section 4.1.2.1. Therefore, it is important that this
part of Section 4.1.2.1 is performed.
Because of these requirements, the informative method described in Appendix E.4 cannot
be substituted for the method described in Section 4.1.2.1. However, it can be used in
addition to Section 4.1.2.1.

 14

Currently, ANSI X9.31 is being updated by American Standards Committee (ASC) X9,
Financial Services. RSA Security is the editor of ANS X9.31 within ASC X9; the
updated version may allow certain alternative primality tests if they provide an equivalent
threshold of assurance, as specified in ANS X9.80 Prime Number Generation Primality
Testing and Primality.

DSA.4 From DSA.3 above, it seems that the procedure
outlined in Appendix E.4 simply provides a fast method of
generating the values for p1, p2, q1, and q2 from their respective
X values. As a result, the process of generating p and q from
these values must follow Section 4.1.2.1. Can you confirm this?

Also, would the RSA key generation algorithm testing be
affected if a vendor chooses to use Appendix E.4 to generate p1,
p2, q1 and q2? Appendix E.4 mentions that the sieving method
will remove substantial composite numbers as well as small
primes; however, section 4.1.2.1 mentions that p1, p2, q1, and q2
are the FIRST primes greater than their respective X values.
Since using the sieving method results in some of the smaller
primes being sieved out, is it possible that the values of p1, p2,
q1, and q2 obtained using the sieving method of E.4 will be
different from those values expected by using section 4.1.2.1? If
the values for p1, p2, q1 or q2 are different, the resulting p
and/or q will be different from what is expected by the algorithm
test tool. Will using E.4 affect the key generation algorithm
testing?

Yes, it can be confirmed that the generation of p and q must follow Section 4.1.2.1; in
particular, they must be the first primes after the respective randomly generated values
that satisfy all of the properties listed in that section, including passing the 8 rounds of the
Miller-Rabin test followed by the Lucas test. But that does not preclude sieving the
candidate values of p and q as described in Annex E.4, similar to the sieving of the
candidate values for p1, p2, q1, and q2.
The sieving process should not remove any candidate primes. Because the sieving
primes are all much smaller than the candidate primes, the sieving process should remove
only composites, i.e., non-trivial multiples of the sieving primes.

Actually, the opposite problem is theoretically possible, namely, that the probabilistic
primality test in Section 4.1.2.1 will identify some number as prime that the sieving
method in Annex E.4 eliminates as composite. But the same discrepancy is also
theoretically possible for two different implementations of the probabilistic primality test

 15

in Section 4.1.2.1; e.g., using different sets of bases for the Miller-Rabin test. The
probability of such an event in practice, however, is sufficiently small for us to discount
it.

The sieving in Annex E.4 should not affect validation testing, assuming that it is
implemented correctly, of course, and that the remaining candidates are properly tested
for primality. The validation testing does not directly exercise the sieving process, but, as
discussed above, whether or not the sieving process is used, the same answer should be
the achieved with overwhelming probability.

 16

7 SHA FAQ

SHA.1 A vendor wants to test SHA-1 (byte only). However,
nothing is hashed greater than 256 bytes. How is this
implementation validated?

This is similar to the situation that occurs when a hash implementation does not handle
the NULL string. As in that case, the CMT Lab will generate values using the CAVS
tool. Only the values supported by the restrictions of the implementation will be used in
the validation of the implementation. The CMT Lab should check the response files
individually to assure that the messages satisfying the restriction pass successfully. Also,
on the algorithm submission in the cover letter (and email request), the CMT Lab will
indicate the special case and will explain how the files were verified. The restriction will
be indicated on the algorithm validation certificate and on the algorithm validation list
website.

 17

8 RNG FAQ

RNG.1 When generating RNG test vectors for the General
Purpose RNG, both the Xorg and Korg generators were
selected. Values for Korg were not generated for General
Purpose RNG. Why?

This confusion is caused by adding the General Purpose RNG to an existing screen in the
CAVS tool. The original RNG uses Xorg, Xchange, Korg and Kchange. But the General
Purpose RNG, as specified in the standard, only uses Xorg and Xchange.

Because of the sharing of this screen in the CAVS tool, if Korg and Kchange are selected
for General Purpose RNG, they are ignored. If the original RNG and General Purpose
RNG are selected and Korg, Kchange, Xorg and Xchange are selected, the tests for the
original RNG using Korg, Kchange, Xorg and Xchange will be generated as well as the
tests for the General Purpose RNG using Xorg and Xchange.

In a later release of the CAVS tool, a separate screen will be developed to clarify this
situation.

RNG.2 A vendor implementing the algorithm in Appendix 3.1
eliminated step 3d which calculates a new XKEY. Instead, a new
random XKEY was created. Is this acceptable?

By eliminating step 3d from the implementation, the algorithm is not implemented
according to the specifications in the standard. An algorithm must be implemented
according to the specifications in the associated standard in order to be recognized as a
NIST-Approved algorithm.

 18

9 RSA FAQ

RSA.1 If a vendor is having problems getting the GenKey or
SigGen to work properly, where can a known set of values be
obtained to help in the testing?
If a vendor is having problems with a SigGen, a sample of values can be generated by
running the SigVer test and extracting one of the groups of data that pass (P). If the
implementation being tested does not come up with the correct signature, then it can be
concluded that there is something wrong with the vendor’s implementation.

RSA.2 What should be done in the situation where a vendor
supports a different salt length and value for each SHA
algorithm supported in RSASSA-PSS? Currently, only one salt
value can be specified on the CAVS screen. This salt value is
then applied to all SHAs selected.

A modification will be made to the CAVS tool for RSASSA-PSS to allow the entry of
different salt lengths (and salt values, if applicable) per SHA algorithm/mod size. This
will be changed in a future release of the CAVS tool. This will allow for different salt
lengths for each SHA algorithm specified.
Until then, a new project folder will have to be generated for each SHA/salt
combination.

RSA.3 When generating RSASSA-PSS in the Signature
Verification screen for the SHA-512 implementation with a salt
length of 64 bytes and all mod sizes, CAVS (version 4.3)
 returned a "Fatal Error" message and indicated that the
vectors were generated but with errors. Why did this happen?

According to the specifications in the PKCS#1 v2.1 document, this error should be
returned when the following condition occurs (See pg 35, 9.1.1 Encoding operation -
EMSA-PSS-ENCODE):

if emLen < hLen +sLen + 2, output "encoding error" and stop.

 Explanation:
 The emLen = length of the encoded message = modulus size. In the files, the first
mod size selected was 1024.

 19

 In this case (which is the case that fails), emLen =modsize = 1024bits = 128bytes
 The hash length (hLen) is 512bits = 64 bytes
 The salt length (sLen) is 64 bytes.
 Therefore, 128 < 64+64+2 is true causing the "encoding error" message to be output.

The only guidance on salt sizes in the PKCS document on page 34 states that "Typical
salt lengths in octets are hLen (the length of the output of the hash function Hash)
and 0."

In this situation, where mod = 128 bytes and hash = 64 bytes, the salt length can not be
64 bytes without making this formula fail. In reality, the 1024 mod size was not intended
to be used with SHA-512.

NIST has not published any guidance on the interoperability of mod sizes, hash
functions, and salt lengths.
But we have drafted a proposed change to FIPS 186-2, Digital Signature Standard, as
follows:

nlen bits emLen (bytes) hash function outlen (bits) hLen (bytes) max sLen (bits/bytes)
1024 128 SHA-1 160 20 848 bits = 106 bytes 128 >= 20+2+106
2048 256 SHA-224 224 28 1808 bits = 226 bytes 256 >= 28+2+226
2048 256 SHA-256 256 32 1776 bits = 222 bytes 256 >= 32 + 2 + 222
3072 384 SHA-256 256 32 2800 bits = 350 bytes 384 >= 32 + 2 + 350

This new guidance should help with the issue raised in this question (RSA.3). Note that
this is proposed guidance may be modified before it is issued in final form.

Also, in the future the CAVS screen will be redesigned to allow for different salt lengths
(and values) for each mod size and SHA. Until then, if more than one mod size is
selected, the CAVS tool would have to be run separately for each mod size to avoid this
problem.

RSA.4 In the SigVerX.fax files, what does the number in
parentheses after the result =F field mean?

The number indicates what value was changed to make the signature fail.

(1) Message was changed
(2) Public Key was changed
(3) Signature was changed

RSA.5 Is it acceptable to generate primes using the
procedure detailed in Appendix E.4 of the ANSI X9.31 standard

 20

instead of that described in section 4.1.2.1 of the same
standard? Moreover, if this is acceptable, what sort of primality
testing needs to be done? Appendix E.4 is not very clear in this
respect.

The CAVP compared Appendix E.4 of the ANSI X9.31 standard with Section 4.1.2.1 of
the same standard to determine of one could be substituted for the other. We concluded
that Appendix E.4 can be used in addition to, but not in place of Section 4.1.2.1.

Appendix E.4 contains the same calculations for generating the private prime factors that
are found in Section 4.1.2.1. The only difference is that Appendix E.4 explains how to
find the first prime after the first random X is selected by using sieving; it informs the
implementer how to do this. Section 4.1.2.1 does not specify how to select this value.
Therefore, one could add this processing to an implementation.

Appendix E.4 does not specify how to do the primality testing of Y. But since this is a
very important step, it is specified in Section 4.1.2.1. Therefore, it is important that this
part of Section 4.1.2.1 is performed.

Because of these requirements, the informative method described in Appendix E.4 cannot
be substituted for the method described in Section 4.1.2.1. However, it can be used in
addition to Section 4.1.2.1.

Currently, ANSI X9.31 is being updated by American Standards Committee (ASC) X9,
Financial Services. RSA Security is the editor of ANSI X9.31 within ASC X9; the
updated version may allow certain alternative primality tests if they provide an equivalent
threshold of assurance, as specified in ANSI X9.80, Prime Number Generation, Primality
Testing and Primality.

 21

10 HMAC FAQ

HMAC.1 If an implementation supports other MAC size than
those supported by the CAVS tool, how are these MACs tested?

The CAVP cannot test every MAC size. Instead, several MAC sizes throughout the valid
range have been selected for testing. At least one of the specified MAC sizes must be
supported by the implementation.

All values on the HMACVS and the CAVS for HMAC are dealing with values in
BYTES. Therefore all values are AUTOMATICALLY divisible by 8 (since 1 byte = 8
bits).

HMAC.2 An implementation supports all 3 ranges of values
(K<B, K>B, and K=B). Does this mean that 3 separate tests
should be run for the same implementation or will the CAVS tool
allow us to choose all 3 ranges?
The CAVS tool will allow for all three ranges to be selected at the same time.
Enter 2 length values for K<B, 2 length values for K>B and check the K=B box.
All these length values will be used in the data that is produced.

HMAC.3 An implementation only supports one K length size <
B. How should this be indicated since the CAVS tool requires
the entry of two values of K < B to be tested?
The CAVS tool requires that two values of K<B to be supplied to provide more testing
for the implementation. But in the case where only one value is supported by the
implementation, simply enter the same value for K<B in both places. The tool will
generate the request file with two sets of data to test the key size allowed.

The same process is applicable to K>B.

HMAC.4 If an HMAC implementation uses a SHA
implementation that cannot be tested separately, does the SHA
algorithm have to be tested? Why?

When an implementation of the HMAC algorithm is validated, the CAVP requires that
the SHA algorithm has been previously validated. Even though the HMAC algorithm
relies on the correctness of the SHA algorithm, the HMAC testing alone does not provide

 22

for adequate testing of the SHA algorithm. The HMAC tests focus on testing the HMAC
processing only.

The CAVP requires additional "stress testing" of the underlying SHA algorithm which is
provided in the SHA Validation tests.

This requirement cannot be bypassed.

 23

11 CCM FAQ

CCM.1 A hardware implementation of AES CCM has been
developed to be used for IEEE 802.11i communications. The
CCM implementation cannot perform the validation tests
because of restrictions as specified in 802.11i. Can the CCM
implementation be validated?

To validate the CCM algorithm, the algorithm must be designed in such a way as to allow
for it to be tested. It must also be designed as specified in IEEE the official CCM
document. If these two conditions are not met, the CCM implementation cannot be
validated.

Any restrictions put on the algorithm as a result of the IEEE 802.11i protocol is outside
the scope of the CCM algorithm validation testing.

CCM.2 If a CCM implementation only supports specific
lengths for the Associate Data field because of IEEE 802.11i
restrictions, can it be validated?

If a CCM algorithm validation only supports specific byte lengths for the Associate Data
field, a special note would be included on the validation list and the certificate indicating
the restriction that only those supported lengths were validated. The fact that the
restriction is associated with the IEEE 802.11i protocol is irrelevant.

 24

12 ECDSA FAQ

ECDSA.1 For ECDSA PKV validation testing, why are values for
X and Y different lengths? As the question states: “…our
client's ECDSA implementation is having some problems with
two of the curves located in PKV. To the best of my knowledge
for B-163 and K-163, both proper values for Qx and Qy are
supposed to be 21 bytes in length. However, it appears the
CAVS tool expects values that are 22 bytes in length to be valid
Public Keys. For example, the CAVS tool expects the first
iteration for K-163 to be a valid Public Key but their
implementation determines it to be invalid.

Qx = 0001c59c158ff8b2f8d113542922e6952ea8dcd88c89
Qy = 00059f2d1622c0c89edd9ffc6901eadc31b42050cc44

Again, it appears that values for the above iteration are 22 bytes in length, which is why
their implementation determines the public key is invalid.

Here is another example from K-163:

Qx = 34696e17431234b071bbb9674cc1f8b82a7ebd52
Qy = 0007788cd02faaa8289d1f61bd7db262572cf870a783

The Qx is 20 bytes in length and Qy appears to be 22 bytes in
length, which their implementation determines to be invalid
when the CAVS tool expects it to be a valid public key.”

All values should be thought of as numbers. All valid values have a MAXIMUM value
of 21 bytes (163 bits = 21 bytes (really 20 bytes and 1 nibble)). One of the tests for PKV
validation checks to see if the implementation can identify when a value is out of range –
that is greater than 21 bytes. That is why the file indicates a 22 byte number for Qx and
Qy. IT IS NOT A VALID NUMBER AND SHOULD FAIL.

In the PKV files, if a value is less than 21 bytes in length (e.g., 20 bytes), only the 20
bytes are printed; i.e., the zeros are added only if there is a partial byte. That is why the
file looks as if some values are longer than others. But if every value in this file is read
as a number, it will be read in correctly.

 25

ECDSA.2 In the PKVVer.fax files, what does the number in
parentheses after the result =F field mean?
The number indicates what value was changed to make the signature fail.
For the prime curve:

(1) Make Q_x or Q_Y out of range
(2) Point not on curve

For a Poly Curve:
(1) Point not on curve
(2) Add PT of order 2

ECDSA.3 Can an ECDSA implementation be validated if it does
not use any NIST-recommended curves?

No. In order to validate an implementation of ECDSA, the algorithm implementation
must implement at least one NIST-recommended curve. It can have non-recommended
NIST curves as well as long as there is at least one NIST-recommended curve.

Other facts concerning cryptographic modules using ECDSA algorithm
implementations:

1. All FIPS 140-2 validated modules (that implement ECDSA for use in the FIPS
mode) must have an ECDSA algorithm certificate.

2. In order to receive an ECDSA algorithm (FIPS 186-2) certificate, the module
must be tested using one of the NIST recommended curves.

3. A FIPS 140-2 module may use non-recommended NIST curves in the FIPS
Approved mode of operation, if the module has successfully received an
algorithm certificate.

4. The module itself (without modification) must implement and support testing of
the ECDSA algorithm with a NIST-recommended curve. The validated modules
boundary as specified by the provided version/PN/etc must support and have the
ability to perform ECDSA with a NIST-recommended curve. It cannot be
provided temporarily for testing in an emulator/simulator and then be removed
from the “real” module.

5. If a vendor’s module cannot support algorithm testing by using a NIST
recommended curve, the ECDSA services of this module will be considered non-
compliant.

 26

13 CMAC FAQ

CMAC.1 What should be done in the situation where an
implementation only supports one message length for either
case where the message length is divisible by the Blocksize or
the message length is not divisible by the Blocksize?

If the implementation only supports one message length that is divisible by the Blocksize,
enter this length in both fields. The same applies to the situation where an
implementation only supports one message length that is not divisible by the Blocksize.

 27

	1 Introduction
	2 General Algorithm FAQs (Can be applied to all algorithms)
	GEN.1 Where is the documentation for each algorithm validati
	GEN.2 Is it acceptable if an implementation of an algorithm
	GEN.3 Should the algorithm implementation name be independen
	GEN.4 If an algorithm implementation performs more than one
	GEN.5 Are there prerequisites to having some algorithms vali
	GEN.6 An algorithm implementation has restrictions on it bec
	In order for a cryptographic algorithm to be validated, the
	GEN.8 Guidance on what to do when the zip file being sent to
	GEN.9 What should be done if an algorithm implementation is
	GEN.10 Suppose an algorithm implementation has been validate
	GEN.11 If a vendor claims that their implementation runs on

	3 AES FAQ
	AES.1 Guidance on evaluating the Counter Mode (for either th

	4 DES FAQ
	TDES.1 Guidance on evaluating the Counter Mode (for either t
	DSA.1 If vendors are having problems getting their PQGGen o
	DSA.2 In the X186 RNG, does an implementation have to suppor
	DSA.3 When implementing the RSA key generation algorithm acc
	DSA.4 From DSA.3 above, it seems that the procedure outlined

	7 SHA FAQ
	SHA.1 A vendor wants to test SHA-1 (byte only). However, not

	8 RNG FAQ
	RNG.1 When generating RNG test vectors for the General Purp
	RNG.2 A vendor implementing the algorithm in Appendix 3.1 el

	9 RSA FAQ
	RSA.1 If a vendor is having problems getting the GenKey or
	RSA.2 What should be done in the situation where a vendor su
	RSA.3 When generating RSASSA-PSS in the Signature Ver
	RSA.4 In the SigVerX.fax files, what does the number
	RSA.5 Is it acceptable to generate primes using the procedur

	10 HMAC FAQ
	HMAC.1 If an implementation supports other MAC size than tho
	HMAC.2 An implementation supports all 3 ranges of values (K
	HMAC.3 An implementation only supports one K length size < B
	HMAC.4 If an HMAC implementation uses a SHA implementation t

	11 CCM FAQ
	CCM.1 A hardware implementation of AES CCM has been develope
	To validate the CCM algorithm, the algorithm must be designe

	12 ECDSA FAQ
	ECDSA.2 In the PKVVer.fax files, what does the number
	ECDSA.3 Can an ECDSA implementation be validated if it does

	13 CMAC FAQ
	CMAC.1 What should be done in the situation where an impleme

